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Abstract. A d-dimensional quantum model system confined to a general hypercubical geometry with linear
spatial size L and “temporal size” 1/T ( T - temperature of the system) is considered in the spherical
approximation under periodic boundary conditions. For a film geometry in different space dimensions 1

2σ <
d < 3

2
σ, where 0 < σ ≤ 2 is a parameter controlling the decay of the long-range interaction, the free energy

and the Casimir amplitudes are given. We have proven that, if d = σ, the Casimir amplitude of the model,
characterizing the leading temperature corrections to its ground state, is ∆ = −16ζ(3)/[5σ(4π)σ/2Γ (σ/2)].
The last implies that the universal constant c̃ = 4/5 of the model remains the same for both short, as
well as long-range interactions, if one takes the normalization factor for the Gaussian model to be such
that c̃ = 1. This is a generalization to the case of long-range interaction of the well-known result due to
Sachdev. That constant differs from the corresponding one characterizing the leading finite-size corrections
at zero temperature which for d = σ = 1 is c̃ = 0.606.

PACS. 05.70.Jk Critical point phenomena – 64.60.i General studies of phase transitions

1 Introduction

The confinement of quantum mechanical vacuum fluctua-
tions of the electromagnetic field causes long-ranged forces
between two conducting uncharged plates which is known
as (quantum mechanical) Casimir effect [1,2]. The confine-
ment of critical fluctuations of an order parameter field
induces long-ranged forces between the surfaces of the
film [3,4]. This is known as “statistical-mechanical
Casimir effect”. The Casimir force in statistical-
mechanical systems is characterized by the excess free en-
ergy due to the finite-size contributions to the free energy
of the system. In the case of a film geometry L × ∞2,
and under given boundary conditions τ imposed across
the direction L, the Casimir force is defined as

F τCasimir(T,L) = −∂f
ex
τ (T,L)
∂L

, (1)

where f ex
τ (T,L) is the excess free energy

f ex
τ (T,L) = fτ (T,L)− Lfbulk(T ). (2)

Here fτ (T,L) is the full free energy per unit area and per
kBT , and fbulk(T ) is the corresponding bulk free energy
density.

The full free energy of a d-dimensional critical system
in the form of a film with thickness L, area A, and bound-
ary conditions a and b on the two surfaces, at the bulk
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critical point Tc, has the asymptotic form

fa,b(Tc, L|d) ∼= Lfbulk(Tc|d) + fasurface(Tc|d)

+ f bsurface(Tc|d) + L−(d−1)∆a,b(d) + · · · (3)

as A → ∞, L � 1. Here fsurface is the surface free en-
ergy contribution and ∆a,b(d) is the amplitude of the
Casimir interaction. The L dependence of the Casimir
term (the last one in Eq. (3)) follows from the scale invari-
ance of the free energy and has been derived by Fisher and
de Gennes [3]. The amplitude ∆a,b(d) is universal, de-
pending on the bulk universality class and the universality
classes of the boundary conditions [4,5].

Equation (3) is valid for both fluid and magnetic sys-
tems at criticality. Prominent examples are, e.g., one-
component fluid at the liquid-vapour critical point, the
binary fluid at the consolute point, and liquid 4He at
the λ transition point [4]. The boundaries influence the
system to a depth given by the bulk correlation length
ξ∞(T ) ∼ |T−Tc|−ν , where ν is its critical exponent. When
ξ∞(T ) � L the Casimir force, as a fluctuation induced
force between the plates, is negligible. The force becomes
long-ranged when ξ∞(T ) diverges near and below the bulk
critical point Tc in an O(n), n ≥ 2 model system in the
absence of an external magnetic field [6,7]. Therefore in
statistical-mechanical systems one can turn on and off the
Casimir effect merely by changing, e.g., the temperature
of the system.
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The temperature dependence of the Casimir force for
two-dimensional systems has been investigated exactly
only on the example of Ising strips [8]. In O(n) models for
T > Tc the temperature dependence of the force has been
considered in [5]. The only example where it is investigated
exactly as a function of both the temperature and mag-
netic field scaling variables is that of the three-dimensional
spherical model under periodic boundary conditions [6,7].
There exact results for the Casimir force between two walls
with a finite separation in a L×∞2 mean-spherical model
have been derived. The force is consistent with an attrac-
tion of the plates confining the system.

The most of the results available at the moment are
for the Casimir amplitudes. They are obtained for d = 2
by using conformal-invariance methods for a large class of
models [4]. For d 6= 2 results for the amplitudes are avail-
able via field-theoretical renormalization group theory in
4−ε dimensions [4,5,9], Migdal-Kadanoff real-space renor-
malization group methods [10], and, relatively recently, by
Monte Carlo methods [11]. In addition to the flat geome-
tries recently some results about the Casimir amplitudes
between spherical particles in a critical fluid have been
derived too [9,12]. For the purposes of experimental veri-
fication that type of geometry seems more perspective.

It should be noted that in contrast with the quan-
tum mechanical Casimir effect, that has been tested
experimentally with high accuracy [13], the statistical-
mechanical Casimir effect lacks so far a satisfactory ex-
perimental verification (for comments on the specific dif-
ficulties that the experiment stacks with see, e.g. [12]).

In recent years there has been a renewed
interest [14,15] in the theory of zero-temperature
quantum phase transitions. In contrast to temperature
driven critical phenomena, these phase transitions occur
at zero temperature as a function of some non-thermal
control parameter, say g, (or a competition between
different parameters describing the basic interaction of
the system), and the relevant fluctuations are of quantum
rather than thermal nature. In the present article we
consider a statistical-mechanical Casimir effect when
critical quantum fluctuations play an essential role.

It is well-known from the theory of critical phenomena
that for temperature driven phase transitions quantum ef-
fects are unimportant near critical points with Tc > 0. It
could be expected, however, that at rather low (as com-
pared to characteristic excitations in the system) tem-
peratures, the leading T dependence of all observables is
specified by the properties of the zero-temperature criti-
cal point, say at gc. The dimensional crossover rule as-
serts that the critical singularities with respect to g of a
d-dimensional quantum system at T = 0 and around gc

are formally equivalent to those of a classical system with
dimensionality d+z (z is the dynamical critical exponent)
and critical temperature Tc > 0. This makes it possible to
investigate low-temperature effects (considering an effec-
tive system with d infinite spatial and z finite temporal
dimensions) in the framework of the theory of finite-size
scaling (FSS). This theory has been applied to explore
the low-temperature regime in quantum systems [14–16],

when the properties of the thermodynamic observables in
the finite-temperature quantum critical region have been
the main focus of interest.

In this paper a theory of the scaling properties of the
free energy and Casimir amplitudes of a quantum spher-
ical model [17] with nearest-neighbor and some special
cases of long-range interactions (decreasing at long dis-
tances r as 1/rd+σ) is presented. These interactions enter
the exact expressions for the free energy only through their
Fourier transform which leading asymptotic is U(q) ∼ qσ∗,
where σ∗ = min(σ, 2) [18]. As it was shown for bulk sys-
tems by renormalization group arguments σ ≥ 2 corre-
sponds to the case of finite (short) range interactions, i.e.
the universality class then does not depend on σ [19]. Val-
ues satisfying 0 < σ < 2 correspond to long-range in-
teractions and the critical behaviour depends on σ. On
the above reasoning one usually considers the case σ > 2
as uninteresting for critical effects, even for the finite-size
treatments [20]. However recent Monte Carlo results sug-
gest that it might well not be the case at least for contin-
uous Ising model [21]. There Bayong and Diep state that
for d = 2 the critical exponents does not depend on σ and
reach their short-range values for σ ≥ 3. On the basis of
that result it seems that for finite-size systems the case
σ > 2 is nontrivial. Since, up to the authors knowledge
that is the only example where σ > 2 is of interest for
studying critical properties, here we will consider only the
case 0 < σ ≤ 2.

The investigation of the Casimir effect in a classical
system with long-range interaction possesses some pecu-
liarities in comparison with the short-range system. Due
to the long-range character of the interaction there exists a
natural attraction between the surfaces bounding the sys-
tem. One easily can estimate that in the ordered state the
L-dependent part of the excess free energy that is raised
by the direct inter-particle (spin) interaction is of order of
L−σ+1. In the critical region one still has some effect stem-
ming from that interaction on the background of which
develops the fluctuating induced new attraction between
the surfaces which is in fact the critical Casimir force.
In the definition (1) used here, that is the common one
when one considers short-range systems, these both effects
are superposed simultaneously. Therefore, here, generally
speaking, one should expect a crossover from a regime
governed by the critical Casimir force (in the sense of a
fluctuation induced force; it is of the order of L−d, see
Eq. (3)) to the one govern by the direct attraction (of the
order of L−σ; note that if d = σ they will of the same
order being dominating in different temperature regions).
An interesting case when forces of similar origin are act-
ing simultaneously is that one of the wetting when the
wetting layer is nearly critical and intrudes between two
noncritical phases if one takes into account the effect of
long-range correlations and that one of the long-range van
der Waals forces [22,23].

In quantum systems additional new features will be
observed since the “temporal direction” corresponds for-
mally to a short-range type interaction in the correspond-
ing classical analog of the system, i.e. one unavoidable has
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“anisotropy” in the spectrum of a quantum system with
long-range interactions. The effects depend on which di-
mension – the temporal or the spatial one – is the finite
one. When the spatial dimension is finite we only mention
here and will demonstrate in the current article, that an
effect similar to that for the classical systems exists. If the
finite dimension is the temporal one such effect will not
be observed since then the long-range interaction is inter-
surficial and is not effected directly by the “finite size” of
the system.

The plan of the paper is as follows. In Section 2 we
define some generalization of Casimir amplitudes in quan-
tum systems and present some hypotheses for the corre-
sponding excess free energies. Then in Section 3 we give
a brief review of the model and the basic equations for
the free energy and the quantum spherical field in the
case of periodic boundary conditions. Since we make use
of the ideas of the FSS theory, the bulk system in the low-
temperature region is considered as an effective (d + z)
dimensional classical system with z finite (temporal) di-
mensions. This is done to make possible a comparison
with other results based on the spherical type approxi-
mation, e.g., in the framework of the spherical model and
the QNLσM in the limit n → ∞. The scaling forms for
the excess free energy, the spherical field equation and the
Casimir force are derived for a 1

2σ < d < 3
2σ dimensional

system with a film geometry in Section 4. In Section 5
we present some results for the Casimir amplitudes in the
case of short-range interactions and in some special cases
of long-range interactions. The paper closes with conclud-
ing remarks given in Section 6.

2 Casimir amplitudes in critical quantum
systems

Let us consider a quantum system with a film geometry
L ×∞d−1 × Lτ , where Lτ ∼ ~/(kBT ) is the “finite-size”
in the temporal (imaginary time) direction and let us sup-
pose that periodic boundary conditions are imposed across
the finite space dimensionality L (in the remainder we will
set ~ = kB = 1). Let f(T, g,H;L|d) be the free energy
density of this system. Then, according to the dimensional
crossover rule, the Privman-Fisher hypothesis [24] for fi-
nite classical systems and equation (2) in the quantum
case one could state that

1
L
f ex(T, g,H;L|d) = (TLτ)L−(d+z)Xu

ex(x1, x2, ρ|d), (4)

with scaling variables

x1 = L1/νδg, x2 = hL∆/ν and ρ = Lz/Lτ . (5)

Here ∆ and ν are the usual critical exponents of the bulk
model, h is a properly normalized external magnetic field
H, δg ∼ g − gc, and Xu

ex is the universal scaling function
of the excess free energy. According to the definition (1)
of the Casimir force, one obtains immediately

F dCasimir(T, g,H;L) = (TLτ)L−(d+z)Xu
Casimir(x1, x2, ρ|d),

(6)

where the universal scaling functions of the Casimir force
Xu

Casimir(x1, x2, ρ|d) is related to the one of the excess free
energy Xu

ex ≡ Xu
ex(x1, x2, ρ|d) by

Xu
Casimir(x1, x2, ρ|d) = −(d+ z)Xu

ex −
1
ν
x1
∂Xu

ex

∂x1

+
∆

ν
x2
∂Xu

ex

∂x2
+ zρ

∂Xu
ex

∂ρ
· (7)

It follows from equation (6) that depending on the scaling
variable ρ one can consider the general case of Casimir
amplitudes

∆u
Casimir (ρ|d) = Xu

Casimir (0, 0, ρ|d) . (8)

The classical amplitudes ∆a,b(d) (for (a, b) ≡ periodic
boundary conditions) introduced by equation (6) are par-
ticular cases of ∆u

Casimir (ρ|d) for ρ = 0, i.e. T = 0 (we
remind that our system, according to the dimensional
crossover rule, is formally equivalent to a d + z dimen-
sional classical one).

In addition to the above “usual” excess free energy and
Casimir amplitudes, denoted by the superscript “u”, one
can define, in a full analogy with what it has been done
above, “temporal excess free energy density” f ex

t ,

f ex
t (T, g,H|d) = f(T, g,H;∞|d)− f(0, g,H;∞|d) (9)

and “temporal Casimir amplitudes”

f ex
t (T, gc, 0|d) = TL−d/zτ ∆t

Casimir (d) . (10)

Whereas the “usual” amplitudes characterize the lead-
ing L corrections to the bulk free energy density at the
critical point, the “temporal amplitudes” determine the
leading temperature-dependent corrections to the ground
state energy of an infinite system at its quantum critical
point gc.

If in equation (10) the quantum parameter g is in the
vicinity of gc, then one expects

f ex
t (T, g,H) = TL−d/zτ Xt

ex

(
xt

1, x
t
2|d
)
, (11)

i.e. instead of the amplitude ∆t
Casimir (d) one has a scaling

function Xt
ex (xt

1, x
t
2|d) which is the corresponding analog

of Xu
ex(x1, x2, ρ|d). The scaling variables now are

xt
1 = L1/νzδg and xt

2 = hL∆/νz. (12)

Obviously

∆t
Casimir (d) = Xt

ex (0, 0|d) . (13)

Let us finally note that if z = 1 the temporal excess
free energy introduced here coincides, up to a (nega-
tive) normalization factor, with the proposed by Neto and
Fradkin [25] definition of the non-zero temperature gener-
alization of the C-function of Zamolodchikov.

Now we pass to study the quantities introduced above
on the example of one exactly solvable model.
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3 The model

The model we consider is described by the Hamilto-
nian [17]

H =
1
2
g
∑
`

P2
` −

1
2

∑
``′

J``′S`S`′ +
1
2
µ
∑
`

S2
` −H

∑
`

S`,

(14)

where S` are spin operators at site `. The operators P`
play the role of “conjugated” momenta (i.e. [S`,S`′ ] =
0, [P`,P`′ ] = 0, and [P`,S`′ ] = iδ``′ , with ~ = 1). The
coupling constant g measures the strength of the quantum
fluctuations (below it will be called quantum parameter),
H is an ordering magnetic field, and the spherical field µ
is introduced so as to ensure the constraint∑

`

〈
S2
`

〉
= N. (15)

Here N is the total number of quantum spins located
at sites “`” of a finite hypercubical lattice Λ of size
L1 × L2 × · · · × Ld = N and 〈· · · 〉 denotes the standard
thermodynamic average taken with the HamiltonianH. In
reference [17], the equivalence of the model (14) and the
quantum O(n) nonlinear sigma model in its large n-limit
is shown.

Let us note that in the last few years an increasing
interest in the spherical approximation (or large n-limit),
generating tractable models of quantum critical phenom-
ena, has been observed [17,26–30]. There are different pos-
sible ways of quantization of the spherical constraint. In
general they lead to different universality classes at the
quantum critical point [17,26–28]. The commutation rela-
tions for the operators S` and P` together with the kinetic
term in the Hamiltonian (14) do not describe quantum
Heisenberg-Dirac spins but quantum rotors as is pointed
out in reference [17]. Since the quantum rotors model has
been widely exploited in the field of high-temperature su-
perconductivity (see, e.g. [14] and references therein) we
hope that the treatment of the model (14) presented below
might be of some interest to those problems.

For nearest neighbour interaction different low tem-
perature regimes and finite-size scaling properties of the
model are investigated in reference [29].

The free energy of the model in a finite region Λ
under periodic boundary conditions applied across the

f(t, λ, h;L|d, σ)/J = −h
2

2φ
− φ

2
+
λkd
2d

xdD (xσD + φ)
1
2

2F1

(
1,−1

2
, 1 +

d

σ
,

xσD
xσD + φ

)
− λ

4
σL−(d+σ

2 )

(4π)
d
2

∞∑
n=1

∫ ∞
0

dxx−
σ
4− d2−1

× exp
(
−n

2

4x

)
Gσ

2 ,1−σ4

(
−xσ/2Lσφ

)
− λ

σ

kd√
π
Γ

(
d

σ

)
φ
d
σ+ 1

2

∞∑
m=1

K d
σ+ 1

2

(
mλ

t φ
1
2

)
(
m λ

2tφ
1
2

) d
σ+ 1

2

−λ
√

2
L−(d+σ

2 )

(2π)
d+1

2

∞∑
n=1

∞∑
m=1

∫ ∞
0

dz
mdz

3
2
F d

2−1,σ

( z

mσ

)
exp

[
−zLσφ− n2

4zLσ

(
λ

t

)2
]
· (18)

finite dimensions has the form [30]

βfΛ (β, g,H) = sup
µ

{
1
N

∑
q

ln
[
2 sinh

(
1
2
βω (q;µ)

)]
−µ

2
β − βg

2ω2 (0;µ)
H2

}
· (16)

Here the vector q has the components
{

2πn1
L1

, · · · , 2πnd
Ld

}
,

nj ∈
{
−Lj−1

2 , · · · , Lj−1
2

}
for Lj odd integers, and β is the

inverse temperature (with kB = 1). In (16) the spectrum
is ω2 (q;µ) = g (µ+ U(q)) with U(q) ∼= J |q|σ, 0 < σ ≤ 2.
In the above expressions U(q) is the Fourier transform of
the interaction matrix where the energy scale has been
fixed so that U(0) = 0. The supremum in equation (16) is
attained at the solutions of the mean-spherical constraint,
equation (15), that reads

1 =
t

N

∞∑
m=−∞

∑
q

1
φ+ U(q)/J + b2m2

+
h2

φ2
, (17)

where we have introduced the notations: b = (2πt)/λ,
λ =

√
g/J is the normalized quantum parameter, t = T/J

- the normalized temperature, h = H/J - the normalized
magnetic field, and φ = µ/J is the scaled spherical field.
Equations (16, 17) provide the basis for studying the crit-
ical behaviour of the model under consideration.

In the thermodynamic limit it has been shown [17] that
for d > σ the long-range order exists at finite temperatures
up to a given critical temperature tc(λ). Here we shall
consider the low-temperature region for 1

2σ < d < 3
2σ.

We remind that 1
2σ and 3

2σ are the lower and the upper
critical dimensions, respectively, for the quantum critical
point of the considered system.

4 Scaling form of the excess free energy
and the Casimir force at low temperatures

For a system with a film geometry L × ∞d−1 × Lτ
(where 1

2σ < d < 3
2σ), after taking the limits L2 →

∞, · · · , Ld →∞ in equation (16) with L1 = L, we receive
the following expression for the full free energy density
(see Appendix A)

see equation (18) below.
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Xu
ex(xu

1 , x
u
2 , ρ|d, σ) =

1

2
xu

1 (y∞ − y0) +
1

2
(xu

2)2

�
1

y∞
− 1

y0

�
− kd

4
√
πσ

Γ

�
d

σ

�
Γ

�
− d
σ
− 1

2

��
y
d
σ

+ 1
2

0 − y
d
σ

+ 1
2∞

�

− kd
σ
√
π
Γ

�
d

σ

� ∞X
m=1

2
664

(2y0)
d
σ

+ 1
2 K d

σ
+ 1

2

�
m
√
y0
ρ

�
�
m
√
y0
ρ

�( dσ+ 1
2 )

−
(2y∞)

d
σ

+ 1
2 K d

σ
+ 1

2

�
m
√
y∞
ρ

�
�
m
√
y∞
ρ

�( dσ+ 1
2 )

3
775− 1

4

σ

(4π)
d
2

×
∞X
n=1

Z ∞
0

x−
σ
4−

d
2−1 exp

�
−n

2

4x

�
Gσ

2 ,1−
σ
4

�
−x

σ
2 y0

�
dx−

√
2

(2π)
d+1

2

∞X
n=1

∞X
m=1

Z ∞
0

dz

mdz
3
2
F d

2−1,σ

� z

mσ

�

× exp

�
−zy0 −

n2

4zρ2

�
(24)

Here k−1
d = 1

2 (4π)
d
2 Γ (d/2), xD is the radius of the spher-

icalized Brillouin zone,

Gα,β (t) =
1√
π

∞∑
k=0

Γ (k + 1/2)
Γ (αk + β)

tk

k!
(19)

(it was introduced in Ref. [31]),

Fν,σ (y) =
∫ ∞

0

xν+1Jν (x) exp (−yxσ) dx (20)

and Kν(x), and Jν(x) are the MacDonald and Bessel func-
tions, respectively. The main advantage of the above ex-
pression, despite of its complicated form in comparison
with equation (16), is the simplified dependence on the
size L which now enters only via the arguments of some
functions. This gives us the possibility, as it is explained
below, to obtain the scaling functions of the excess free
energy and the Casimir force.

In equation (18) φ is the solution of the corresponding
spherical field equation that follows by requiring the par-
tial derivative of the r.h.s. of equation (18) with respect to
φ to be zero. The bulk free energy fbulk(t, λ, h|d, σ) results
from f(t, λ, h;L|d, σ) by merely taking the limit L → ∞
in it. Let us denote the solution of the corresponding bulk
spherical field equation by φ∞. Then for the excess free
energy it is possible to obtain from equations (2, 18), in
full accordance with equation (4), the finite size scaling
form

1
L
f ex(t, λ, h;L|d, σ) = (TLτ)L−(d+z)Xu

ex(xu
1 , x

u
2 , ρ|d, σ),

(21)

with scaling variables

xu
1 = L1/ν

(
λ−1 − λ−1

c

)
, xu

2 = hL∆/ν and ρ = Lz/Lτ ,
(22)

with Lτ = λ/t. Here the critical value of λ = λc is

λ−1
c =

1
2

(2π)−d
∫

ddq(U(q)/J)−
1
2 , (23)

and ν−1 = d− 1
2σ, ∆/ν = 1

2

(
d+ 3

2σ
)
, and z = 1

2σ are the
critical exponents of the model [17]. In equation (21) the

universal scaling function Xu
ex(xu

1 , x
u
2 , ρ|d, σ) of the excess

free energy has the form

see equation (24) above

(see Appendix A for details of the calculations), where
y0 = φLσ and y∞ = φ∞Lσ.

By direct evaluation of the above expression it is easy
to see that below λc if the finite system is in ordered phase
(then y0 = y∞ = 0) Xu

ex ∼ L−σ, that reflects the domi-
nating contribution of the direct inter-spin long-range in-
teraction in that region [32]. As we see from equation (21)
one observes a crossover from L−(d+z) behavior, where
the fluctuation induced interactions dominate, to L−σ one
where the direct inter-spin interactions become essential.

For the Casimir force one obtains

F d,σCasimir(T, λ, h;L)=(TLτ)L−(d+z)Xu
Casimir(x

u
1 , x

u
2 , ρ|d, σ),

(25)

where the universal scaling function of the Casimir force
Xu

Casimir(x
u
1 , x

u
2 , ρ|d, σ) is related to that one of the excess

free energy Xu
ex ≡ Xu

ex(xu
1 , x

u
2 , ρ|d, σ) by equation (7).

The above expressions for the scaling functions of the
excess free energy (and the Casimir force) are the most
general ones, which gives the possibility of a general anal-
ysis including issues as: i) the sign of the Casimir force;
ii) monotonicity of the Casimir force as a function of the
temperature; iii) the relation of the excess free energy scal-
ing function to the corresponding finite-temperature C-
function and its monotonicity properties; iv) finite-system
generalization of the finite-temperature C-function, etc.

In the present article we will concentrate on evaluation
of the Casimir amplitudes for some special cases where one
can obtain simple analytical expressions for them.

It is clear that just due to the dimensional crossover
rule L plays the same role for the finite system at t =
0 as Lτ for the corresponding infinite quantum system.
Therefore, by a symmetry that obviously arises when σ =
2, one should expect that the behavior of the two types of
amplitudes (“normal” and “temporal”) will be essentially
the same. We will see that explicitly below.
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For the model we study here one can show that

Xt
ex(xt

1, x
t
2|d, σ) =

1
2
xt

1 (y∞ − y0) +
1
2

(xt
2)2

(
1
y∞
− 1
y0

)
− kd

4
√
πσ

Γ

(
d

σ

)
Γ

(
− d
σ
− 1

2

)(
y

(d/z+1)/2
0 − y(d/z+1)/2

∞

)
− kd
σ
√
π
Γ

(
d

σ

)
(2y0)

d
σ+ 1

2

∞∑
m=1

K d
σ+ 1

2

(
m
√
y0

)
(
m
√
y0

) d
σ+ 1

2
· (26)

Here the scaling variables are defined by

xt
1 = L1/νz

τ

(
1
λ
− 1
λ c

)
, xt

2 = hL∆/zντ , (27)

y0 = L2
τφ0 and y∞ = L2

τφ∞. Note that y0 is the solution of
the corresponding spherical filed equation for the nonzero-
temperature system, whereas y∞ is the solution for the
zero-temperature (“infinite” in the “temporal” dimension)
one. The direct evaluation of (26), supposing the finite
system in a ordered state, shows that Xt

ex remains of the
same order in that region. This is exactly the behavior to
be expected, as we mentioned in the Introduction, despite
the long-range nature of the interactions, since the finite
“dimension” of the system is now the temporal one.

Now we are ready to investigate in a bit more detail
the behavior of the Casimir amplitudes as a function of
d, σ and ρ.

5 Evaluation of Casimir amplitudes

In this section we determine the Casimir amplitudes of
the model in the case of short-range interactions at d = 2
and in the special case d = σ of long-range interactions.

5.1 “Usual” Casimir amplitudes

5.1.1 Two-dimensional system with short-range interactions
(d = σ = 2)

In this case essential simplifications in the expression for
the Casimir forces can be made. The functions Gα,β and
Fα,β used in the general expression of the free energy (18)
turn into the explicit forms

G1,1/2(z) =
1√
π

exp (z) (28)

and

Fα,2(z) = (2z)−α−1 exp
(
− 1

4z

)
. (29)

At the quantum critical point λ = λc, h = 0 this leads to
(y∞ = 0)

Xu
ex(0, 0, ρ|2, 2) = −

( y0

2π

) 3
2 ∑
m,n

′
K 3

2

(√
y0

(
n2

ρ2 +m2
))

(√
y0

(
n2

ρ2 +m2
)) 3

2

− 1
12π

y
3/2
0 , (30)

where the primed summation over the integers m and n
indicates that the term corresponding to m = n = 0 is
excluded.

Since it is not clear how to obtain an explicit analyti-
cal solution for y0 in a film geometry at nonzero temper-
ature, the above expression cannot be simplified further,
but has to be analyzed numerically (see, e.g., [29] for a
numerical analysis of the spherical filed equation). Never-
theless, the above expression can be significantly simpli-
fied at zero temperature. Then one shows that the solu-
tion y0 of the spherical field equation for the finite system
with a film geometry L × ∞ × Lτ , at zero temperature
(i.e. 1 � L � ∞, Lτ = ∞) and at the quantum critical
point λ = λc, h = 0 [29,30] is y0 = 4 ln2

(√
5/2 + 1/2

)
.

Setting this value of y0 in (30), taking into account that
K3/2(x) =

√
π/(2x) exp(−x)(1+1/x), and using the prop-

erties of the polylogarithm functions Lip(x) [33], we obtain
after some algebra that the Casimir amplitude is

∆u
Casimir (0|2, 2) = −2ζ(3)

5π
≈ −0.1530. (31)

Here ζ(x) is the Riemann zeta function.

5.1.2 One-dimensional system with long-range interactions
(d = σ = 1)

We can obtain a relatively simple analytical expression
from equation (24) only in the particular case σ = 1. In
this case the functions G and F become

G1/2,3/4(−z) =
√
z

π
exp

(
z2/2

)
K1/4

(
z2

2

)
(32)

and

Fν,1 (y) =
2ν+1

√
π
Γ (ν + 3/2)

y

(1 + y2)ν+3/2
, (33)

respectively. In order to obtain explicit results for the am-
plitudes, numerical evaluations are unavoidable even in
the simplest case corresponding to zero temperature. In
this case we obtain from equation (24)

Xu
ex(0, 0, 0|1, 1) = −

√
y0

8π
3
2

∞∑
`=1

∫ ∞
0

dxx−
3
2 exp

(
y2

0x

2
− `2

4x

)
×K 1

4

(
y2

0x

2

)
− 1

3π
y

3/2
0 · (34)

Here y0 is the solution of the equation for the spheri-
cal field which can be obtained by requiring the partial
derivative of the r.h.s of (34) with respect to y0 to be
zero. Solving the last equation numerically we end up with
y0 = 0.6248. After substitution of the solution in equa-
tion (34) we obtain for the Casimir amplitude

∆u
Casimir(0|1, 1) = −0.3157. (35)

The result given by equation (35) shows that the Casimir
amplitude in the case σ = 1 is of larger magnitude than
the one in the case of short-range interaction. One can ask
whether this is just a coincidence or the Casimir ampli-
tudes are increasing function of σ for a given fixed d.
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5.1.3 Relation with the Zamolochikov’s C-function

In terms of the critical-point value of an analog of the
finite-temperature C-function [25], the result given by
equation (31) can be rewritten in the form

∆u
Casimir (0|d, 2) = −nu(d, 2)c̃u(d, 2), (36)

where in analogy with the short-range interaction case
above we define a number c̃u via the relation

c̃u(d, σ) = −∆u
Casimir(0|d, σ)/nu(d, σ). (37)

Here, as usual, the normalization factor nu(d, σ) is chosen
so that to ensure c̃u = 1 for the corresponding Gaussian
model, i.e.

nu(d, σ) =
2σ/2Γ

(
d
2 + σ

4

)
ζ
(
d+ σ

2

)
πd/2

∣∣Γ (−σ4 )∣∣ · (38)

For σ = 2 we immediately obtain c̃u(2, 2) = 4/5, where
nu(d, 2) = Γ ((d + 1)/2)ζ(d + 1)/π(d+1)/2 becomes the
normalization factor given in [25]. In that way we repro-
duce the well-known result for c̃ due to Sachdev [33] who
considered an example of a three dimensional conformal
field theory. This coincidence of the values of c̃ is due to
the fact that both models belong to the same universal-
ity class. For more details on the behavior of the finite
temperature C-function in the case σ = 2, d = 1, 2, 4
see, e.g. [34]. The d-dependence of the value c̃u(d, 2) ≡
∆u

Casimir (0|d, 2) /nu(d, 2) has been considered in [35] for
d-dimensional (2 < d < 4) conformally invariant field the-
ory. The relation between the C function and the Casimir
force for the classical version of the model and short-range
interaction has been analyzed in some details for d = 2
in [7].

In the particular case of long-range interaction d =
σ = 1, in accordance with equations (37) and (35) one
gets

c̃u(1, 1) = 0.606. (39)

5.2 “Temporal” Casimir amplitudes

5.2.1 σ-dimensional system (d = σ)

Let us note that unlike the case of “usual” Casimir ampli-
tudes here it is possible to consider the more general case
d = σ, where 0 < σ ≤ 2. From equation (26) one obtains
a general expression for the temporal Casimir amplitudes
for a system with geometry ∞d × Lτ , at the quantum
critical point λ = λc, h = 0,

∆t
Casimir (d, σ) = − kd

4
√
πσ

Γ

(
d

σ

)
Γ

(
−2d
σ
− 1

2

)
y
d
z+1
0

− kd
σ
√
π
Γ

(
d

σ

)(
2y2

0

) d
σ+ 1

2

∞∑
m=1

K d
σ+ 1

2
(my0)

(my0)
d
σ+ 1

2
, (40)

where the scaling variable y0 is the solution of the corre-
sponding equation for the spherical field. We notice here

that in the particular case d/σ = 1 equation (40) simpli-
fies considerably. That is why we are going to investigate
namely this case. In a way similar to that explained in the
case of short-range interactions, one obtains (0 < σ ≤ 2)

∆t
Casimir(σ, σ) = − 16

5σ
ζ(3)

(4π)σ/2
1

Γ (σ/2)
· (41)

Note that the defined “temporal Casimir amplitude”
∆t

Casimir(σ, σ) reduces for σ = 2 to the “normal” Casimir
amplitude ∆u

Casimir (0|2, 2), given by equation (31). This
reflects the existence of a special symmetry in that case
between the “temporal” and the space dimensionalities of
the system.

When σ 6= 2 it is easy to verify that the following
general relation

∆t
Casimir(σ, σ)

∆t
Casimir(2, 2)

=
8π

σ(4π)σ/2Γ (σ/2)
(42)

between the temporal amplitudes holds. The r.h.s. of (42)
is a decreasing function of σ.

5.2.2 Relation with the Zamolochikov’s C-function

As it has been already mentioned in Section 2 if z =
1 the temporal excess free energy (see Eq. (9)) coin-
cides, up to a negative normalization constant, with the
nonzero-temperature generalization of the C-function of
Zamolodchikov proposed in [25]. For z 6= 1 a straightfor-
ward generalization of this definition can be proposed at
least in the case of long-range power-low decaying inter-
action

C(T, g|d, z) = −T−(1+d/z) vd/z

n(d, z)
f t

ex(T, g), (43)

where z = σ/2, the nonuniversal constant v in our nota-
tions is v = TLτ (see Eq. (11)), and the normalization
factor is taken to be such that the corresponding Gaus-
sian model with the considered type of interaction will
have C(T, gc|d, z) ≡ c̃t(d, σ) = 1 at its critical point, i.e.

nt(d, σ) =
4
σ

ζ (1 + 2d/σ)
(4π)d/2

Γ (2d/σ)
Γ (d/2)

· (44)

Let us note that the above choice of the normalization
constant nt(d, z) preserves not only the c̃ value for the
Gaussian model, but also the corresponding one for the
spherical model if d = σ. Indeed, in that case from (41)
and the above definitions one again obtains that

c̃t(σ, σ) = 4/5 (45)

for the spherical model. The result given by equation (45)
is a generalization to the case of long-range interaction of
the Sachdev’s result.
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6 Concluding remarks

In the present article the free energy of a system with
a geometry L × ∞d−1 × Lτ (where 1

2σ < d < 3
2σ), is

derived (see Eq. (18)). For σ = 2 this general result re-
duces to the one reported in [30] where only the case of
short-range interactions has been considered. The expres-
sion (21) represents actually the verification of the analog
of the Privman-Fisher hypothesis [24] for the finite-size
scaling form of the free energy (formulated initially for
classical systems) in the case when the quantum fluctu-
ations are essential. Note, that in that case one has a fi-
nite space dimension and one additional finite dimension
that is proportional to the inverse temperature, which pro-
vide different types of critical regimes and Casimir am-
plitudes. According to the finite-size scaling hypothesis
[24,36] one has to expect that the temperature multiply-
ing the universal scaling function will be with exponent
p = 1 + d/z [36], where the dynamic-critical exponent z
reflects the anisotropic scaling between space and “tem-
poral” (“imaginary-time”) directions.

Equations (24, 25) present a general expression for
the Casimir force in the quantum spherical model. In the
classical limit (λ = 0) for a system with short-range in-
teraction it coincides with the corresponding one derived
in [6,7] for the classical spherical model.

In order to derive the Casimir amplitudes in a simple
analytical closed form, some particular cases (d = σ) have
been considered:

1) For the short-range case (σ = 2) the correspond-
ing amplitude is given in equation (31). This amplitude is
equal to the “temporal Casimir amplitude” for the O(n)
sigma model in the limit n → ∞ [33]. In the short-range
case we have demonstrated explicitly that the two models,
due to the fact that they belong to the same universality
class, indeed possess equal Casimir amplitudes as it is to
be expected on the basis of the hypothesis of universality.

2) In the long-range case (d = σ 6= 2), the correction
to the ground-state energy of the bulk system due to the
nonzero temperature is determined by equation (41). One
observes that in this case ct(σ, σ) = 4/5 does not depend
on σ. This could be understood by noting that by changing
σ one does not change the exponent in the spectrum that
corresponds to the “temporal” (finite-size) dimensionality
(see Eq. (17)).

3) At zero temperature we evaluated numerically the
Casimir amplitude for the particular case d = σ = 1 of
the long-range interaction. The result (35) shows that the
Casimir amplitude is of a larger magnitude than in the
case of short range interaction (σ = 2). Furthermore, the
universal amplitude cu(1, 1) is no longer σ-independent,
because the finite-size part of the spectrum is σ-dependent
in this case.

In accordance with the general expectations, all
the amplitudes that we have derived are negative (see
Eqs. (30, 31, 41 and 35)).

Finally, let us note that the basic expression (see
Eq. (24)) for the scaling function of the excess free en-
ergy can be used as a starting point for generalization
of some of the existing results on the C-function to the

case of long-range interactions. We have suggested in equa-
tion (43) a generalization of the nonzero-temperature C-
function, proposed by Neto and Fradkin in [25], to the
case of power-law long-range interactions. For the quan-
tum spherical model this definition leads to c̃ = 4/5 for
any d = σ which generalizes to long-range interactions
the corresponding result for the case of short-range inter-
actions (d = σ = 2) due to Sachdev [33].

This work is supported by The Bulgarian Science Foundation
(Projects F608/96 and MM603/96). The authors would like to
thank Jordan Brankov for stimulating discussions.

Appendix A: Mathematical appendix

First we explain how from equation (16) one can obtain
(18) for a system with a geometry L ×∞d−1 × Lτ . It is
easy to see that (16) can be rewritten in the form

f(t, λ, h;L)/J =
t

N

∑
q

ln

{
2 sinh

[
λ

2t

√
φ+

U(q)
J

]}

−h
2

2φ
− φ

2

= −h
2

2φ
− φ

2
+A(L)− t

∞∑
n=1

Un(L), (A.1)

where

A(L) =
λ

2N

∑
q

√
φ+ |q|σ (A.2)

and

Un(L) =
1
N

∑
q

exp
[
−nλ

t

√
φ+ |q|σ

]
. (A.3)

In order to calculate A(L) we use the identity [31]

√
1 + zα =

α

2

∫ ∞
0

[1− exp (−zt)] t−1−α/2Gα,1−α2 (−tα)

+1 (A.4)

(see Eq. (19) for the definition ofGα,β). Since we are inter-
ested in the geometry L×∞d−1×Lτ , one has by standard
arguments

1
N

∑
q

→ 1

(2π)d−1

∫
dqd−1 × 1

L

[L−1]/2∑
q=−[L−1]/2

. (A.5)

In the last sum over q, by using the asymptotic for-
mula [37]

1
L

∑
q

exp

[
−a
(

2πq
L

)2
]
≈ 1√

4πa

{
erf
(
π
√
a
)

+2
∞∑
l=1

exp
[
− l

2L2

4a

]}
,

(A.6)
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valid for L� 1, we obtain, after some algebra,

A(L) = A(∞) + δA(L), (A.7)

where

A(∞) =
λ

2

∫ π

−π
dq1 . . .

∫ π

−π
dqd
√
φ+ (q2

1 + . . .+ q2
d)σ/2

(A.8)

and [31]

δA(L) = −λ
4

σ

(4π)d/2

∞∑
l=1

∫ ∞
0

x−σ/4−d/2−1 exp
(
− l

2L2

4x

)
×Gσ

2 ,1−σ4

(
−xσ/2φ

)
dx. (A.9)

Since the only singularities of A(∞) as a function of φ are
coming from small q’s, it is justified to use a sphericaliza-
tion of the Brillouin zone, which leads to

A(∞) ' λ

2
kd

∫ xD

0

dx
x1−d

√
φ+ xσ (A.10)

' λkd
2d

xdD (xσD + φ)1/2

×2F1

(
1,−1

2
, 1 +

d

σ
,

xσD
xσD + φ

)
, (A.11)

where 2F1 is the hypergeometric function. Now it is clear
how the “first half” of (18) can be obtained. Next we
turn to evaluation of the term Un(L). Taking into account
(A.5), we rewrite Un(L) in the form

Un(L) =
L−1

(2π)d−1

(L−1)/2∑
q=−(L−1)/2

∫ π

−π
dq2 . . .

∫ π

−π
dqd

× exp
[
−nλ

t

√
φ+ (q2

1 + . . .+ q2
d)

σ
2

]
. (A.12)

Using the Poisson summation formula

b∑
n=a

f (n) =
∞∑

k=−∞

∫ b

a

dn exp [i2πkn] f (n)

+
1
2

[f (a) + f (b)] (A.13)

we obtain from the above expression

Un(L) = Un(∞) + δUn(L), (A.14)

where

Un(∞) = kd

∫ xD

0

dxxd−1 exp
[
−nλ

t

√
φ+ xσ

]
(A.15)

and

δUn(L) =
2

(2π)d

∞∑
l=1

∫ π

−π
dq1 . . .

∫ π

−π
dqd cos [q1lL]

× exp
[
−nλ

t

√
φ+ (q2

1 + . . .+ q2
d)σ/2

]
. (A.16)

In the low-temperature limit t � 1 one can replace in
(A.15) xD by infinity. Then, using the integral represen-
tation of Kν(x)

Kν(2
√
zt) = K−ν(2

√
zt)

=
1
2

∫ ∞
0

(z
t

) ν
2
x−ν−1 exp

(
−tx− z

x

)
dx

(A.17)

we derive

Un(∞) =
λ

tσ

kd√
π
Γ

(
d

σ

)
φ
d
σ+ 1

2K d
σ+ 1

2

(
n
λ

t
φ

1
2

)
×
(
n
λ

2t
φ

1
2

)−( dσ+ 1
2)
. (A.18)

We are left to deal now only with δUn(L). Sphericalizing
the Brillouin zone in (A.16), performing the integrations,
by using the integral representation for the Bessel function
Jν(z)∫ a

−a

(
a2 − x2

)β−1
exp [iλx] dx =

√
πΓ (β)

(
2a
λ

)β−1/2

Jβ−1/2(aλ), (A.19)

(Re β > 0) we get

δUn(L) =
2L−d/2+1

(2π)d/2

∞∑
l=1

∫ xD

0

xd/2

ld/2−1
Jd/2−1 (lLx)

× exp
[
−nλ

t

√
φ+ xσ

]
. (A.20)

In the low-temperature limit the upper limit of integra-
tion in the above expressions can be replaced by infinity.
From (A.18) and (A.20) one obtains the last two terms in
equation (18).
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